
QED Radiation in Vincia

Rob Verheyen

With Peter Skands & Ronald Kleiss

Work in progress



2

Introduction

Giele, Kosower, Skands:1102.2126
Gehrmann, Ritzmann, Skands:1108.6172

Vincia is a parton shower plugin for Pythia based on antenna factorization 
Currently Vincia only does QCD radiation 
We want to include QED radiation too

I’ll discuss the three algorithms for photon emission we’re implementing

YFS
• Resums soft photon logarithms 
• Collinear logarithms can be included, but not resummed 
• Afterburner to add soft photons

• Resums collinear photon logarithms 
• Interleaving with QCD shower

DGLAP
Current approaches to photon radiation
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Leading Color Gluon Emission
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Factorization
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Photon Emission
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Photon Emission

|M({p}, k)|2 ⇡ e2aQED
e ({p}, k) |M({p0})|2

Factorization

branchingn ! n+ 1

aQED
e ({p}, k) = �

X

[a,b]

QaQb a
QCD
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Ordering scale

Goal: recast this branching into a (set of) 2 ! 3 branchings
Photon emissions are a multi-scale problem

n ! n+ 1
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Option 1:  
Pairing
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Incoherent Pairing

Pythia-like approach: Include only one antenna function for every fermion

aQED
e ({p}, k) = Qf+
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• Correct collinear behaviour 
• Only includes some eikonal factors

Pair up the fermions to minimise m2
f+
1 f�
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Competition between independent radiators
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Incoherent Pairing

Pair up the fermions to minimise m2
f+
1 f�

1
+m2

f+
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2
+ ...

Brute force O(n!) complexity…

e+

e−

e−

e+

Photon radiation should decrease as the angle between  
opposite charges decreases

Emission scales are kinematically restricted by the antenna mass
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The Hungarian Algorithm
Turns out this is a well-known problem from graph theory!
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The Hungarian Algorithm
Let’s look at an example to see how it works
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The Hungarian Algorithm
Step 1: Subtract the lowest row element from all rows
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The Hungarian Algorithm
Step 2: Subtract the lowest column element from all rows
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The Hungarian Algorithm
Step 3: Find the minimal line covering
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If the line covering is maximal (n=3), pairing with cost 0 can be found
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The Hungarian Algorithm
Step 4: Find the lowest uncovered element
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The Hungarian Algorithm
Step 4: Subtract that number from all uncovered element
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The Hungarian Algorithm
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O(n3)complexity, so not computationally prohibitive



Option 2: 
Coherent



19

Coherent Emission

Equivalent to ordering in

Separate phase space into sectors
branching2 ! 3

But there’s a problem…
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Sudakov Veto Algorithm
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Coherent Emission 
We need an overestimate for the branching kernel

It’s possible to find one, but… 

The algorithm is slow!
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Option 3: 
Coherent Weighted
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Sudakov Veto Algorithm
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Coherent Weighted Emission
Use an event-based incomplete overestimate

Much faster, but events are weighted
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Summary
We’re implementing three ways of doing photon emissions

• Fast 
• Not coherent, but has most important eikonals

1. Incoherent Pairing

2. Coherent Unweighted
• Slow 
• Fully coherent

3. Coherent Weighted
• Fast 
• Weighted events



Extra Slides
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Comparison - Coherence
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Comparison - DGLAP equation


