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Introduction
Event generation is really hard!
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Introduction
Can we use deep neural networks to do event generation?

Possible applications:
• Faster 
• Data driven generators 
• Targeted event generation
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Introduction

Study of different types of unsupervised generative models 
• Generative Adversarial Networks 
• Variational Autoencoders 
• Buffer Variational Autoencoder

Can these networks be used to sample probability distributions?



Generative Adversarial Networks 
(GANs)
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Generative Adversarial Networks
Two networks (Generator & Discriminator) that play a game against 
each other
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Generative Adversarial Networks
Loss function:

Nash equilibrium:

pdata(x) = pgen(x)

D(x) =
1

2
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Generative Adversarial Networks

1812.04948



Variational Autoencoders 
(VAEs)
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Autoencoders

• Data is encoded into latent space 
• Dim of latent space is often lower than dim of data
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Variational Autoencoders
Add degree of randomness to training procedure
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Variational Autoencoders
Points in latent space are ordered
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Variational Autoencoders
Loss function

Mean squared error Kullback–Leibler divergence

LVAE = (1� �)
1

N
(~xi � ~yi)

2 + �DKL(N (µi,�i),N (0, 1))

MSE   : Gaussians prefer being very narrow 
KL Div: Gaussians prefer being close to   N (0, 1)

is a hyperparameter: tune by hand�
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Information Buffer
The latent space representation of our datapoints are now ordered

But we can do better: Create information buffer

p(z) =
1

n

nX

i

N (µi,�i)

Representation of distribution of  
training data in latent space

Normally, one would now sample from in latent spaceN (0, 1)



Results
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Toy Model
1 ! 2            decay with uniform angles and  
no exact momentum conservation 

Trained on four-vectors
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Top pair production

• One top required to decay leptonically

5⇥ 105

• MG5 aMC@NLO 6.3.2 + Pythia 8.2 + Delphes 3

• Number of training points

• Jets with pT > 20 GeV

Event generation with the B-VAE is              faster!O(108)
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Top pair production
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Latent space distributions

Distributions are still Gaussian-like

Some have sharp cutoffs: Unphysical events outside

Information buffer very important!
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Latent Space Principal Component Analysis
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Latent Space Principal Component Analysis
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Possible Applications

Most direct application: Importance sampling for ME generation

� /
Z

d�|M(�)|2 =

Z
d� p(�)

|M(�)|2

p(�)

Current methods: VEGAS Recent ML techniques:  
Latent variable models
1810.11509

e+e� ! qgq̄ efficiency:
• VEGAS: ~4% 
• LVM: ~ 65% 
• B-VAE: ???
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Applications & Conclusion

• Data-driven event generators 
• Targeted event generation 
• Applications outside High Energy Physics? 
• ???

Deep neural networks can be used as event generators


