Electroweak Corrections in the Vincia Parton Shower

Rob Verheyen

In collaboration with Ronald Kleiss, Peter Skands, Helen Brooks

Overview

- 1. Parton shower overview
- 2. Electroweak showering
- 3. Novel features in the electroweak sector

Parton shower overview

Parton Showers

- Essential part of Monte Carlo event generators
- Process-independent resummation framework
- Fully differential
- Interface hard scattering (high scale) to hadronization (low scale)
- Many types with many differences

Factorization

Based on factorisation properties of Matrix Element in singular limits

1. Quasi-collinear limit

$$p_i \cdot p_j pprox m_i^2, m_j^2$$
 and $E_i^2, E_j^2 \gg p_i \cdot p_j$

$$|M_{n+1}(..,p_i,p_j,..)|^2 \to 8\pi\alpha_s \frac{1}{(p_i+p_j)^2} P_{(ij)\to ij}(z)|M_n(..,p_{ij},..)|^2$$

Factorization

Based on factorisation properties of Matrix Element in singular limits

2. Soft limit

 $E_j \approx m_j \text{ and } E_i, E_k \gg E_j$

$$|M_{n+1}(..,p_i,p_j,p_k..)|^2 \to 4\pi\alpha_s C \left[2\frac{p_i \cdot p_k}{p_i \cdot p_j p_j \cdot p_k} - \frac{m_i^2}{(p_i \cdot p_j)^2} - \frac{m_k^2}{(p_j \cdot p_k)^2} \right] |M_n(..,p_i,p_k..)|^2 + \mathcal{O}(1/N_C^2)$$

Main Ingredients

1. Phase space factorisation

$$d\Phi_{n+1} = d\Phi_n \times d\Phi_{\rm ps}$$

- 2. Ordering scale $p_{\perp}^2(\Phi_{\rm ps})$
- 3. Branching kernel

$$M_{n+1}(\Phi_{n+1})|^2 \approx \sum_i B_i(\Phi_{\rm ps}) \times |M_n(\Phi_{\rm ps})|^2$$

Comes with a kinematic map

1. Momentum conservation

2. IR safety

 $(\Phi_n)|^2$

Parton Showers

Branching kernel (real corrections)

$$P_i(\Phi_{\mathrm{ps},i}) = B(\Phi_{\mathrm{ps},i})\Theta(p_{\perp,i}^2 < p_{\perp,i-1}^2) \times \Delta(p_{\perp,i-1}^2)$$

T Sudakov factor (virtual corrections)

$$\Delta(p_{\perp,i-1}^2, p_{\perp,i}^2) = \exp\left(-\int_{p_{\perp,i}^2}^{p_{\perp,i-1}^2} d\Phi_{\rm ps} B(\Phi_{\rm ps})\right)$$

Parton shower is *unitary*: cancellation of real and virtual corrections $\rightarrow \sigma_{\rm inc}$ unaltered

Parton Shower Accuracy

- Formal NLL accuracy Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez 2002.11114 Nagy, Soper 2011.04773 Forshaw, Holguin, Platzer 2003.06400
- Inclusion of higher-order branching kernels → Requirement for NNLL

Hoche, Krauss, Prestel 1705.00982 Li, Skands 1611.00013

• Spin correlations

Karlberg, Salam, Scyboz, RV 1611.00013 Richardson, Webster 1807.01955

• Subleading colour effects $1/N_c^2 \sim 10\%$ Hamilton, Medves, Salam, Scyboz, Soyez 2011.10054 Nagy, Soper 1501.00778 Platzer, Sjodahl, Thoren 1808.00332 Forshaw, Holguin, Platzer 1905.08686 Isaacson, Prestel 1806.10102

- Electroweak corrections $\alpha/\alpha_s \sim 10\%$ \bullet Christiansen, Sjostrand arXiv:1401.5238 Krauss, Petrov, Schoenherr, Spannowsky arXiv:1403.4788 Chen, Han, Tweedie arXiv:1611.00788 Kleiss, RV 2002.09248
 - → Rest of the talk

Vincia: Three ingredients

1. Phase space factorisation

 $d\Phi_{\rm ps} = \frac{1}{16\pi^2} \lambda^{\frac{1}{2}} (m_{IK}^2, m_I^2, m_K^2) \, ds_{ij} \, ds_{jk} \frac{d\varphi}{2\pi}$

2. Ordering scale: Ariadne p_{\perp}^2

$$p_{\perp}^2 = \frac{s_{ij}s_{jk}}{s_{IK}}$$

3. Branching kernel: Antenna functions

$$a_{q\bar{q}}(s_{ij}, s_{jk}) = 4\pi\alpha_s C_F \left(2\frac{s_{ik}}{s_{ij}s_{jk}} - 2\frac{m_i^2}{s_{ij}^2} - 2\frac{m_k^2}{s_{jk}^2} + \frac{1}{s_{jk}^2}\right)$$

Side note: Spin interference

In QCD, spin interference effects only lead to azimuthal modulation \bullet \rightarrow Integrates out of the Sudakov

$$\Delta(p_{\perp,i-1}^2, p_{\perp,i}^2) = \exp\left(-\int_{p_{\perp,i}^2}^{p_{\perp,i-1}^2} d\Phi_{\rm ps} B(\Phi_{\rm ps})\right)$$

$$Azimuthal integral$$

• In EW, spin influences the rate of emissions \rightarrow Does not integrate out of the Sudakov

Vincia's solution: Evolution of intermediate helicity states

- Should capture leading effects
- Needs separate branching kernels for every spin configuration

Electroweak Showering

Why EW Showers?

- Real corrections: EW gauge bosons, tops, Higgs part of jets
- Virtual corrections: Universal incorporation of Sudakov logs $\frac{lpha}{\pi}\ln^2\left(s/Q_{
 m EW}^2
 ight)$

Applications		events
 (HL)-LHC 	ATLAS 1609.07045	action of L
 Future colliders 		迸 10
 DM spectra 	Bauer, Rodd, Webber 2007.15001	10
\rightarrow Results later		10
		10
		47

Existing implementations

- Christiansen, Sjostrand arXiv:1401.5238 Only vector boson emissions
- Full-fledged EW shower

Krauss, Petrov, Schoenherr, Spannowsky arXiv:1403.4788

Chen, Han, Tweedie arXiv:1611.00788

Electroweak Branching Kernels

$$M_{\lambda_{ij},\lambda_i,\lambda_j}(p_i,p_j)$$

Transform to Vincia phase space

$$a_{\lambda_{ij},\lambda_i,\lambda_j}(s_{ij},s_{jk}) =$$

Use spinor-helicity formalism

$$\left|\frac{1}{Q^2}M_{\lambda_{ij},\lambda_i,\lambda_j}(p_i,p_j)\right|^2\right]_{(1-z)\to x_j}^{z\to x_i}$$

$$x_{i} = \frac{s_{ij} + s_{ik} + m_{i}^{2}}{m_{IK}^{2}} \quad x_{j} = \frac{s_{ij} + s_{jk} + m_{j}^{2}}{m_{IK}^{2}}$$
$$Q^{2} = s_{ij} + m_{i}^{2} + m_{j}^{2} - m_{ij}^{2}$$

Longitudinal Polarisations

$M_{\lambda_{ij},\lambda_i,\lambda_j}(p_i,p_j) = \bar{u}_{\lambda_i}(p_i)(v + a\gamma^5) \not \in_{\lambda_j}(p_j)u_{\lambda_{ij}}(p_{ij})$

- 1. Insert spinor representations
- 2. Consider longitudinal polarisation
- 3. Do some Dirac algebra

itarity violation

Goldstone Bosons

Goldstone piece actually couples to Yukawa

Possible to solve with Goldstone equivalence and suitable gauge choice

Spinor helicity formalism enables much simpler solution:

Yukawa couplings

$$\frac{1}{m_j} \left((Q^2 + m_{ij}^2) \not p_i - m_i^2 \not p_{ij} \right)$$

Off-shellness

Goldstone Bosons

Goldstone piece actually couples to Yukawa

Possible to solve with Goldstone equivalence and suitable gauge choice

Spinor helicity formalism enables much simpler solution:

Yukawa couplings

$$\frac{1}{m_{j}} \left((\mathbf{p}^{2} + m_{ij}^{2}) \mathbf{p}_{i} - m_{i}^{2} \mathbf{p}_{ij} \right)$$

$$\downarrow$$
Off-shellness

Collinear Limits

$$-\lambda \quad 0 \quad \left| \begin{array}{c} +(v+\lambda a)\frac{m_im_{ij}}{m_j}\frac{1-z}{\sqrt{z}} \\ \sqrt{\tilde{Q}^2}\sqrt{1-z} \left[\frac{m_i}{m}(v-\lambda a) - \frac{m_{ij}}{m}(v+\lambda a)\right] \end{array} \right| \quad 0 \quad 0 \quad \left| \begin{array}{c} \overline{2} \\ \overline{2} \end{array} \right|$$

 $h \to f\bar{f} \times \frac{e}{2s_w} \frac{m_f}{m_w}$ $\sqrt{\tilde{Q}^2}$ $n_f \left[\sqrt{\frac{1-z}{z}} - \sqrt{\frac{z}{1-z}} \right]$

Â

Collinear Limits

$$\tilde{Q}^2 = Q^2 + m_{ij}^2 - \frac{m_i^2}{z} - \frac{m_j^2}{1-z}$$

The Electroweak Shower

 $\mathcal{O}(1000)$ types of branchings (all FSR + ffV ISR)

Results: Virtual Sudakov logs

 $pp \rightarrow ZZ \rightarrow e^+ e^- \mu^+ \mu^- (100 \text{ TeV})$

Results: DM decay spectra

Comparison with analytic results

Bauer, Rodd, Webber 2007.15001

Novel features in the Electroweak Sector

Resonance Matching

Branchings like $t \to bW_{,} Z \to q\bar{q}$ etc.

- Large scales: EW shower offers best description
- Small scales: **Breit-Wigner distribution**

$$BW(Q^2) \propto \frac{m_0 \Gamma(m)}{Q^4 + m_0^2 \Gamma(m)^2}$$

Matching:

- Sample mass from Breit-Wigner upon production
- Suppress shower by factor

$$\frac{Q^4}{(Q^2 + Q_{\rm EW}^2)^2}$$

Decay when shower hits off-shellness scale

Neutral Boson Interference

Interference between γ, Z_T and h, Z_L

- Complicated solution: Evolve density matrices Very computationally expensive
- Simple solution: Apply event weight \rightarrow Does not get Sudakov right

Bosonic Interference

 $e_R \to e_R \gamma / Z_T \to e_R X X$

Overlap Veto

100000000

100000001

Double counting problem

Last emission QCD

_ast emission EW?

Veto procedure

$$P? \longrightarrow d_{ij}^{\text{Last}} < \min\left(d_{ij}^{\text{EW}}\right) \longrightarrow \text{Accept} \\ \text{Branching} \\ d_{ij} = \min\left(k_{T,i}^2, k_{T,j}^2\right) \frac{\Delta_{ij}}{R} + m_i^2 + m_j^2 - \frac{1}{R}$$

Overlap Veto

 $pp \rightarrow VVj$ (no overlap veto)

Conclusions

- Universal EW radiative corrections relevant at (HL)-LHC and future colliders
- EW sector offers rich physics above the EW scale
- Many features unique to the EW sector
 - Matching to resonance decays
 - Neutral boson interference
 - Overlap between hard scatterings
- Many other features yet to implement
 - Treatment of soft & spin interference
 - Bloch-Nordsieck violations
- EW shower is available in Pythia 8.304 (released last week)

Backup

Bloch-Nordsieck Violations

Requirement: Summing over gauge indices

W radiation in the initial state: PDFs are not isospin symmetric \rightarrow Incomplete cancellation

Effects not large at LHC, but will be significant at higher energies

No straightforward solution in shower language

BN / KLN Theorems: Real and virtual IR singularities cancel

Spinor-Helicity formalism

Fermion

$$u_{\pm}(p) = \frac{1}{\sqrt{2p \cdot k}} (\not p + m) u_{\mp}(k)$$
$$v_{\pm}(p) = \frac{1}{\sqrt{2p \cdot k}} (\not p - m) u_{\mp}(k)$$

 $k \rightarrow$ helicity for massive fermions

Spin points in direction of motion

Resonance Matching

Pythia

- Narrow width approximation
- Decay showers after hard system lacksquare

Vincia

- Decays part of hard system
- Natural treatment of finite width effects

Recoiler Selection

In QCD recoiler determined by colour structure

Gluon splitting: recoiler ambiguous

In EW no such guidance exists

Probabilistic choice to avoid back reaction effects